GEMpire Manual

Chris Marshall

8/14/2001
Contents

1 Introduction 1
1.1 Boardand Turns 2
1.2 Combat 2
1.3 Cities o o e e e e e e 2
1.4 Exploration 2
1.5 Visibility o . 3
1.6 Basic Strategy 3
1.7 Programs 4
1.71 MapEditor 5
1.7.2 Server and Client Programs 7
1.72.1 Ending Turns. 8
1.7.2.2 Setting Passwords 8
1.7.2.3 Saving Games on the Server 9
1.7.2.4 Other Client Commands 9
1.7241 Unload 9
1.7242 BuildPiece 9
17243 GetMap 9
1.7.2.44 Review Turn 9
1.7.2.4.5 Production Select Mode 9
1.7.2.4.6 Piece Select Mode 9
1.7.2.4.7 Prompt Next Piece 9

1 Introduction

GEMpire is a simple turn based multiplayer strategy game, written in java,
designed to be played over the internet in client-server fashion. It is a general-
ization of the commercial game Empire Deluxe for the PC. It consists mainly
of a server, a client, and a map editor.

1.1 Board and Turns

The game is played on a board which is a hexogonal grid. Each hex has a
terrain type which can be land, sea, or several other species of land types.
For the moment, we will consider the simplest configuration of the game. Each
player, on any given turn, will have some number of pieces (which can be armies,
fighters, bombers, destroyers, or several other types of millitary units) on the
board. Each hex usually has at most one piece on it. The first player carries out
his turn by moving some of his pieces around. Each piece has its limits (how
many hexes it can move in one turn). After the first player has moved each of
his pieces up to their limit, or at any point before, he uses the "end-turn" menu
item to finish his turn. At this point, control of the board passes to player 2
and she can move each of her pieces up to their limit if she so desires, and when
she ends her turn, control passes to player 3. Once each player has taken their
turn, turn 1 is over and turn 2 begins the cycle again.

1.2 Combat

If player 1 tries to move one of his pieces (a fighter, say) on top of one of player
2’s pieces (an army, say), combat ensues and if the army loses, it is removed
from play and the fighter now occupies the army’s former hex. If the fighter
loses, it is removed from play and the army remains where it was.

1.3 Cities

Certain hexes contain cities. Cities have the ability to manufacture pieces (al-
though land bound cities cannot manufacture ships'). Each piece type takes
a certain number of turns to produce. All cities on the map start out either
neutral, or owned by one of the players. A common scenario starts each player
out with one city and no pieces (one of the reasons I wrote GEMpire was that I
wanted to explore variations on this and many other aspects of the game). Each
player, on their first move, chooses which piece type they want to manufacture
(since they don’t have any pieces yet, there is nothing else for them to do). As
pieces become available, players move them out of the cities they were produced
in and start exploring the map.

1.4 Exploration

Which brings me to the next point: exploration. The map is initially unknown
to each player (all of the hexes are black except for the initial city and its
neighbors). As a player moves her first piece out of her first city, the hexes
around the piece are filled in with an appropriate images depicting the terrain
type. As pieces move around, more and more of the map is filled in. Eventually,
two player’s pieces move next to each other and first contact is established.

1 Acutally, they can, but the ship wouldn’t be able to go anywhere once produced.

1.5 Visibility

Which brings me to the next point: limited visibility. Any given player can
only see what is in the hexes adjacent to one of their pieces. Players have no
idea what other players are doing except when their pieces rub up against one
another. Thus, fighters, which can move over any terrain type at a rate of five
spaces per turn, are the ultimate reconnassiance units, and typically lead the
exploration of new land masses.

1.6 Basic Strategy

Let’s explore the initial stages of the classic each-player-starts-with-one-city-
and-no-pieces scenario some more. Player 1 has a city on the interior of a
landmass and decides to produce an army first. 6 turns later, the city produces
an army and player 1 starts marching it around. Before long, the army discovers
another city (neutral) and attacks (by attempting to move the army into the
city). The attack is successful and player 1 now owns two cities, and sets the
second city to producing armies. Turns whizz by and player 1 is well on her
way to owning her initial land mass (say she owns five cities now and there are
a total of 8 cities on the mass). There has been no sign of enemy pieces yet.
Now is the time to start producing a troop transport with one city and fighters
with another. Fighters take 12 turns to produce and transports 30. Once
fighters are available, player 1 can begin to see what lies beyond the shores of
her initial land mass (within limits: a fighter can only fly so far before having
to return to a friendly city or to an aircraft carrier to refuel; failure to do so
will cause the fighter to run out of fuel and crash), and once a troop transport
is available armies can be loaded onto it and the transport can carry them to
another land mass to start taking cities. In the best of circumstances, by the
time the transport is ready, the fighters will have located a city on another land
mass so the troop transport can head directly for it. Second best would be
if the fighters had located another land mass but not found a city yet. This
would at least allow the transport to head for land, unload its armies, and head
back to the original land mass to gather more armies. In the worst case, the
transport heads off into the great unknown in search of other land masses at
the rate of 2 sea hexes per turn. Soon after the first transport’s production is
under way is the time to start thinking about producing a destroyer (24 turns
to produce). Destroyers, with their movement rate of three sea hexes per turn,
are the fastest ships of all. Troop transports (unescorted) are easy prey for
them. There is nothing quite like the satisfaction of sinking an enemy transport
with 6 armies loaded on it (the maximum capacity), and nothing quite like the
devestating loss it represents when you own the transport.

For these reasons (to sink enemy transports, to guard your own transports,
and to explore the sea lanes of the map), destroyers are a must early in the game.
As your millitary machine fully ramps up, it is time to think about producing
capital ships, which have a very long lead time, and without which you will be
at a severe disadvantage: crusiers, battleships, and air craft carriers. Cruisers

take 36 turns, Battleships 60 and aircraft carriers 48. Crusiers and battleships
move at two spaces per turn and have the ability to bombard armies on land
from sea hexes. A bombardment occurs when a cruiser is in a sea hex, an army
is in an adjacent land hex, and the cruiser attempts to move onto the land hex.
If the cruiser wins (it would have to be pretty heavily damaged to lose, although
it might take 1 or 2 points of damage in the effort), the army is removed from
play and the cruiser stays in its sea hex.

1.7 Programs

0.K., enough theory. How do you run the various programs? What do they do?
Here’s what the command lines look like for the 3 main applications: the
map editor, the client, and the server:

1. java GEMpire.MapEditor
2. java GEMpire.EmpireClient
3. java GEMpire.EmpireServer <port> someMap.map

4. java GEMpire.EmpireServer <port> someMap.map GUI

Before these commands will do anything, you must have unzipped the distru-
bution file somewhere, you must have some version of the Java Developers Kit
installed, and you have to set your classpath properly. If you are running un-
der linux and your user account is fred, and you unzipped the distrubution in

/home/fred/gempire-0.1, you would want to set your classpath in a bash shell
like this:

export CLASSPATH=/home/fred/gempire-0.1/GEMpire

Also, you will want to invoke these commands from /home/fred /gempire-0.1/GEMpire,
so that GEMpire can find the pieceinfo.txt configuration file located there and
the icons in the images directory there.

Line 1 starts a MapEditor, Line 2 starts a client, and line 3 starts a server
that listens at the given local port and instructs it to load the given map or
game file. Line 4 is similar to 3 but also brings up a client-like GUI without
the visibility restrictions of a client (in other words, the whole map is visible,
and you can watch the movements of every piece on the board as they happen
in real time). Starting a server without a GUI is a useful thing to do when you
want to run a server where you don’t want or can’t have X windows running at
the same time. Say you have access to a shell account on a server somewhere,
and you want to run an empire server on it. If the empire server always insisted
on bringing up a GUI, you’d be out of luck. It is also possible to use a client to
see the same view as the GUI from the server by logging in as player 0, which
is a special player with god-like powers. This allows a game referee to remotely
administer and keep tabs on a game.

1.7.1 Map Editor

In the top level GEMpire directory, there should be a test map called, test.map.
First, try loading it into the map editor (choose “file->open”, and select the file
“test.map” in the file dialog). You should see that it is a small map entirely com-
posed of sea hexes with 9 fighters, 3 from each of 3 teams, that looks something

like this:

alall Map E = o B

File Brush Command

The map editor has a "file," “brush,” and “command” menu. If you choose
“Brush->Piece Palette,” a control that looks like this should pop up:

Fiece Palette

b eietetodiod N
Txsxx «@

PSP E S0
AR AR I R e A 2

The Piece Palette has one row of terrain images at the top with a grid
of piece images below that. The grid has one row for each player and one
column for each piece type. From left to right, the terrain types are sea, land,
unknown?, mountain, forest, rough, river, and channel. Again from left to
right, the piece types are city, infantry, armor, fighter, bomber, air base, troop
transport, destroyer, submarine, aircraft carrier, cruiser, and battleship.

When you start a new map (by selecting “file->new”), it defaults to an all
sea world. You can alter the terrain of a hex by clicking on the terrain type you
want in the piece palette, then clicking on the hex. You add pieces to a map
by clicking on the piece type for the player you want and then clicking the hex
on the map where you want to deposit the piece. You can remove a piece by
clicking on the hex again. Finally, you can enlarge or reduce the map (I mean
the number of rows and columns in the map, not its display size) by choosing

20.K. I this requires a little explanation. This is not any type of terrain, really, but an
artifact of the exploration mechanism of GEMpire. Until a player has first visited a hex, she
doesn’t know what terrain it is. The EmpireClient uses the same Map class the EmpireServer
does to represent the world, except the client starts out not knowing what most of the terrain
is. The map has to assign a terrain type to each hex to draw it to the screen, hence the
’unknown’ type. Perhaps it would have been better named the 'unexplored’ type.

“command->resize map” from the menus. The number of rows and columns are
required to always be even because of how the map is drawn.

The first row of pieces in the palette are for player 0, which is a special
player as noted above. The only piece you would normally put on a map for
player 0 would be a city. Player 0’s cities are “neutral” cities waiting to be
conquered by the normal players (players 1 and above). Although it is possible
to place neutral units of any type on the map, they are not intended for that
purpose and I have not taken any pains to make sure the server and clinet
programs handle them correctly. For all I know, they could cause a crash in
certain circumstances. I suppose the proper thing to do would be to code the
piece palette to not show those pieces as options, but I oppose that solution on
principle, the principle being that I prize flexibility over idiot proofing. Idiot
proofing drastically increases the complexity of code and descreses its flexibility.
It seems a poor trade-off to me. For all I know, neutral pieces might turn out to
have their uses later on, at which point, more testing could be done to make sure
they work correctly. There seems to be something about GUIs that encourages
idiot proofing at the expense of flexibility and this has been the cause of endless
woe in software development.

1.7.2 Server and Client Programs

Line 3 is how you would typically start a server after you have created a world
map. Again, for our example, you would want to type that command from
/home/fred /gempire/ GEMpire.

Line 2 shows how to start the client program. Once started, you use the
“file->connect” menu item to connect to a server. If you had started the server
with

java GEMpire.EmpireServer 8000 test.map

then you could connect to it on the same machine by entering “localhost” in the
host field and “8000” in the port field of the connect dialog that pops up when
you select “file->connect.” After connecting, you will get a login dialog, asking
for a player number and password. By default, the server starts a new game by
assigning the password “pass” to all players, including player 0, the referee.

If you look down to the command shell you started the client from, you
should see some messages from the server, informing you of what the valid
player numbers are.

Try logging in as player 0 by entering “0” in the player field, and “pass” in
the password field, then clicking “ok” in the login dialog. You the client should
retrieve a map of the world from the server and display it. You probably want
to stretch the client window to see the whole map. You should be staring and
the same map you looked at in the MapEditor earlier.

Now, from a different command shell, start another client and log in as player
1 this time. The player 1 client will have most of the map colored in black and
only show you the 3 pieces owned by player 1 along with the cells surroundind
them.

Now, from yet another command shell, start yet another client and log in as
player 2. You should see a map, again mostly black, that shows you only player
2’s pieces and their vicinity.

Because of the order in which login’s occurred, player 1 currently controls
the board. Player 2 can see what’s going on but can not move any pieces. In
the player 1 client, click on one of his pieces (the piece should start blinking,
indicating that it is the “active piece”) and start moving it toward one of player
2’s pieces by using the arrow keys on your keyboard. Make sure you have the
numlock off on the numeric keypad so you can use the PgUp, PgDn, Home, and
End keys to move in diagonal directions.

You should see the piece movements in both the player 0 client and the
player 1 client. The player 2 client won’t see anything until player 1’s piece is
adjacent to one of her pieces. If you attempt to move player 1’s piece on top of
player 2’s piece, combat will ensue and one of the pieces will be removed from
play. From the player 0 client, you can rig the combat, if you wish, by using the
“Server Command” menu so that either the attacker always wins or the defender
always wins. If you try to do this from the player 1 or 2 client, the server will
send you a message that permission was denied.

1.7.2.1 Ending Turns If you exit from the player 1 client, or you select the
“Command->End Turn” menu item, control of the board will pass from player
1 to player2, who can now move her pieces. The normal order of play is for each
player to log in, move their pieces, then select “end turn.” Once each player
that still has pieces on the board selects “end turn” the server will declare the
turn over and start a new turn. It is possible for a player to log in, move some
pieces, log out without ending their turn, log in again, move the rest of their
pieces, and then select end turn. Notice how this simplifies the logistics over
running play by mail games where turns have to be made in a fixed order of
players. Although I haven’t implemented this yet, I will add a timeout option
to the server where players who don’t make their turn in a given length of time
(say, 24 hours) have their turn automatically ended for them. I have seen many
multiplayer play by mail games run over the internet stall because one player
stops making turns and refuses to divulge theit password. With the server client
architecture, you only need to trust one person, the referee. Cheating becomes
much more difficult as the server does not send any more information to the
client than it has a right to see. Writing a custom client will not allow someone
to cheat.

1.7.2.2 Setting Passwords At any time, you can use the “file->set pas-
word” menu item to change the password for your player. The game referee
should, in fact, change player 0’s password before advertising the host address
and port number his server is listening on, lest a sneaky player login as player
0 to cheat before the other players log on. Actually, the best protocol is for the
referee to make up passwords, set them for each player, then email the players
their passwords separately.

1.7.2.3 Saving Games on the Server From a client logged in as player
0, you can cause the server to save the current game state by using the “Server
Commands->Save Game” menu item, which will then prompt you for a filename.
If you go to the directory where the server is running after doing this, you should
see a file with the name you specified. If you then kill the server and wish to
restart it from the saved game file, assuming you had saved the game to the file
“test.gam”, you would simply start it with:

java GEMpire.EmpireServer 8000 test.gam
1.7.2.4 Other Client Commands

1.7.2.4.1 Unload Once you have loaded infantry or armor pieces on
transports, or planes on carriers, you use this command to unload them. You
select the transport or carrier by clicking on it and, once it is blinking, choose
this menu item, at which point the client will prompt you for which piece to
unload. You can also access this command by typing 'u’ after you have selected
a transport or a carrier.

1.7.2.4.2 Build Piece This command is used for infantry and armor to
build air bases.

1.7.2.4.3 Get Map This command retrieves the latest map. You nor-
mally wouldn’t need to use it as the map should be kept up to date automatically.

1.7.2.4.4 Review Turn This command lets you review what happened
on a given turn. The Server keeps a log of all of the messages it sent to the client
for each turn and will simply squirt them back at the client when requested to.
This mechanism needs some work, though, to be more usable.

1.7.2.4.5 Production Select Mode You use this to set city produc-
tion. You first select this item, then when you click on a city, its production
menu comes up, allowing you to determine which pieces the city should produce.
This should be the first thing you do after you capture a city. If you don’t, the
city will not produce anything.

1.7.2.4.6 Piece Select Mode You would typically choose this to exit
the Production Select Mode so you can select pieces for movement again.

1.7.2.4.7 Prompt Next Piece This hasn’t been implemented as a menu
item yet, but exists as a keyboard shortcut. If you type ’p’, the client will ran-
domly select a piece that still has movement left and activate it for you, causing
it to blink. Once you have a good number of pieces on the map, it can be very
hard to remember which ones you have moved already and which you haven’t.
The game would hardly be playable without this command.

